A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa
نویسندگان
چکیده
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by *40 longitude ([4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55 E–140 W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.
منابع مشابه
Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s
The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the interdecadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atm...
متن کاملOnset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations*
The temporal and spatial structures of the atmospheric circulation associated with the climatology and interannual variations of the summer monsoon onset over the Indochina Peninsula were studied using the observed daily rainfall at 30 stations and the NCEP–NCAR reanalysis from 1951 to 1996. The climatological monsoon onset over Indochina is on 9 May, with a standard deviation of 12 days. The m...
متن کاملNonlinear processes reinforce extreme Indian Ocean Dipole events
Under global warming, climate models show an almost three-fold increase in extreme positive Indian Ocean Dipole (pIOD) events by 2100. These extreme pIODs are characterised by a westward extension of cold sea surface temperature anomalies (SSTAs) which push the downstream atmospheric convergence further west. This induces severe drought and flooding in the surrounding countries, but the process...
متن کاملInSAR analysis of the 2008 Reno-Mogul earthquake swarm: Evidence for westward migration of Walker Lane style dextral faulting
[1] Analysis and modeling of InSAR data covering the 2008 Reno-Mogul M 4.7 earthquake swarm indicate that the main event was produced by slip on a previously unrecognized strike-slip fault in the Reno basin. Deformation of 0.5– 2.5 cm in radar line-of-sight was produced by the main event and post-seismic slip over an area of more than 150 km. This earthquake is one of the smallest magnitude eve...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کامل